Choice is suffering: A Focused Information Criterion for model selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise derived information criterion for model selection

. This paper proposes a new complexity-penalization model selection strategy derived from the minimum risk principle and the behavior of candidate models under noisy conditions. This strategy seems to be robust in small sample size conditions and tends to AIC criterion as sample size grows up. The simulation study at the end of the paper will show that the proposed criterion is extremely compet...

متن کامل

Subspace Information Criterion for Model Selection

The problem of model selection is considerably important for acquiring higher levels of generalization capability in supervised learning. In this article, we propose a new criterion for model selection, the subspace information criterion (SIC), which is a generalization of Mallows's C(L). It is assumed that the learning target function belongs to a specified functional Hilbert space and the gen...

متن کامل

A focused information criterion for graphical models

A new method for model selection for Gaussian Bayesian networks and Markov networks, with extensions towards ancestral graphs, is constructed to have good mean squared error properties. The method is based on the focused information criterion, and offers the possibility of fitting individualtailored models. The focus of the research, that is, the purpose of the model, directs the selection. It ...

متن کامل

A Bayesian information criterion for portfolio selection

The mean-variance theory of Markowitz (1952) indicates that large investment portfolios naturally provide better risk diversification than small ones. However, due to parameter estimation errors, one may find ambiguous results in practice. Hence, it is essential to identify relevant stocks to alleviate the impact of estimation error in portfolio selection. To this end, we propose a linkage cond...

متن کامل

An improved Akaike information criterion for state-space model selection

Following the work of Hurvich, Shumway, and Tsai (1990), we propose an “improved” variant of the Akaike information criterion, AICi, for state-space model selection. The variant is based on Akaike’s (1973) objective of estimating the Kullback-Leibler information (Kullback 1968) between the densities corresponding to the fitted model and the generating or true model. The development of AICi proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Economic Modelling

سال: 2012

ISSN: 0264-9993

DOI: 10.1016/j.econmod.2011.09.002